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Abstract 

 
This paper proposes a new portfolio optimization approach that does not rely on the 
covariance matrix and attains a higher out-of-sample Sharpe ratio than the existing 
approaches. Our approach is free from the problems related to the estimation of the 
covariance matrix, solves the corner solution problems of the Markowitz model in 
practice, improves the out-of-sample estimation of portfolio mean, and enhances 
the performance of portfolio by imposing certain structure on asset returns. 
Although the shrinkage to market estimator method shows the smallest out-of-
sample standard deviation, it cannot perform the best in terms of Sharpe ratio when 
compared to our approach. 
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In his seminal paper, Markowitz [1952] proposed a portfolio optimization approach that 

minimizes the variance of a portfolio while achieving the expected return. To implement the 

Markowitz portfolio in practice, the means and covariances of asset returns need to be 

estimated. Traditionally, the sample means and covariances have been used but it is well 

known that the portfolios based on the sample estimates perform poorly out-of-sample due to 

estimation error (Frost and Savarino [1986, 1988] and Litterman [2003] among others). Since 

the estimation of means is more difficult and has a larger impact on out of sample 

performance of portfolio than the estimation of covariances, empirical financial economics 

with the applications of the Markowitz portfolio selection model have focused on minimum 

variance portfolio than mean variance portfolio (DeMiguel et al. [2008], Jagannathan and Ma 

[2003]). 

The Markowitz model also poses other problems when the model is applied to actual 

data. When the number of observations T exceeds the number of assets N, the number of 

estimates to fill the covariance matrix grows exponentially as the number of assets increases 

or the errors in the estimation of parameters lead to unstable and extreme portfolio weights 

over time. Even worse, either when T is less than N, or when asset returns are linearly 

dependent, the covariance matrix becomes singular, in which case the Markowitz model does 

not work.  

To solve the estimation error problem of the Markowitz model, several approaches have 

been developed. The heuristic approaches aim at producing more diversified portfolios either 

by introducing more constraints on portfolio weights (Frost and Savarino [1998],  

Jaganathan and Ma [2003]) or by averaging over portfolio weights that were obtained 

through the bootstrapping procedure (Jorion [1992], Michaud [1998]). On the other hand, the 
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Bayesian approaches directly adjust the inputs by combining prior information with sample 

data (Herold and Maurer [2006]).  

There have been many attempts to find an invertible estimator of the covariance matrix. 

The pseudoinverse estimators of the covariance matrix are used by Sengupta [1983] and 

Pappas, Kiriakopoulos, and Kaimakamis [2010] or the shrinkage estimators of the covariance 

matrix are suggested by Ledoit and Wolf [2003]. Although both approaches find an invertible 

estimator of the covariance matrix of the Markowitz model one way or another, they have yet 

to solve the problem within the Markowitz framework that basically relies on the covariance 

matrix. In particular, Ledoit and Wolf [2003] propose to estimate the covariance matrix by an 

optimally weighted average of two existing estimators-the sample covariance matrix and 

single-index covariance matrix, and show their method achieves a significantly lower out-of-

sample variance than a set of existing estimators. However, as they mention in the paper (p 

605), they solely deal with the structure of risk in covariances, not with the structure of 

expected returns. 

In this paper, we propose a new portfolio optimization approach that does not rely on the 

estimation of the covariance matrix and that attains a higher out-of-sample Sharpe ratio than 

the existing approaches. Since practitioners are generally looking for a portfolio with higher 

Sharpe ratios rather than that of lower variances, we need to use the out-of-sample Sharpe 

ratio rather than the out-of-sample variance to compare the performance of each portfolio 

optimization approach. The objective of the Markowitz model is to find the portfolio weights 

that minimize portfolio variance while achieving expected return on average. However, our 

approach attempts to find the portfolio that can achieve expected return at each point in time 

while minimizing the 2-norm of the portfolio weights. 1  By doing this, we can improve the 
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estimation of means to result in higher out-of-sample Sharpe ratio of portfolio and solve the 

so-called corner solution problem when the Markowitz model is applied in practice.   

Furthermore, the out-of-sample performance of our approach depends on how well the 

in-sample return vectors will span the out-of-sample return vectors. Since it is impossible to 

span the unsystematic risk part of the out-of-sample return vectors by the in-sample return 

vectors, we distinguish between the systematic risk part and the unsystematic risk part and 

attempt to span the out-of-sample systematic risk part by using the in-sample systematic part 

of return vectors alone. To impose some structure on the estimation of the systematic part of 

returns, we assume that stock returns are generated by Fama-French five factor model.  

Our paper contributes to the literature on optimal portfolio choice in several ways. First, 

our approach is free from the problems related to the estimation of the covariance matrix 

because it does not need the covariance matrix when the portfolio weights are derived. 

Second, our approach solves the corner solution problems of the Markowitz model in practice 

because it minimizes the 2-norm of the portfolio weights and thus spreads out the weights. 

Third, our approach can improve the out-of-sample estimation of portfolio mean because it 

attempts to achieve target return at each point in time in-the-sample. Lastly, our approach can 

enhance the performance of portfolio in terms of out-of-sample Sharpe ratio and CEQ 

(Certainty-Equivalent) return by imposing certain structure on asset returns. 

The remainder of this paper is organized as follows. The next section shows that the 

Markowitz approach to the portfolio optimization problem is basically the same as a system 

of linear equations for which the least squares method is applied. In the second section, we 

propose a new portfolio optimization approach that can contribute to solve the many 

problems that arise when the Markowitz model is applied in practice. In the third section, we 
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explain data and show that new approach can greatly enhance the out-of-sample performance 

of portfolio. The last section concludes the paper.  

MARKOWITZ MODEL REVISITED 

Consider risky assets whose returns are itr  ( N,,,i 21=  and T,,,t 21= ). Denote the 

sample mean of each risky asset ir  for Ni ,,2,1 =  and the target return of the portfolio  

q
1

=∑
=

N

i
ii rw  (q: constant) with portfolio weights ∑

=

=
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i
ii wsw

1
1 where,' .The portfolio return at 
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Risk-averse investors would like to minimize the variance of Equation (1) while 

achieving their target return q. Then, the portfolio optimization problem can be written when 

short-selling is allowed as follows: 2  

∑
=

=
T

t
tw 1

2 Minimize εε ,                      (2) 

                     subject to q  1 == rw1w TT and,  

Here, ε means the Euclidean norm of a T-dimensional column vector ε of residuals, 

Tw represents the transpose of an N-dimensional column vector w of portfolio weights, and 

1and r are the N-dimensional column vectors of the1’s and sri ' , respectively. 

We show that Equation (2) is equivalent to the portfolio optimization problem Markowitz 
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tried to solve in his 1952 paper. If we substitute ∑
=

N

i
iirw

1
for q in Equation (1) and rearrange 

the terms, then Equation (1) can be rewritten as: 

( ) )T,,,t,rrw t

N

i
iiti 21( 

1
==−∑

=

ε
                    

(3) 

Let R denote a NT ×  matrix whose jith element is iij rr − . Then, Equation (3) can be 

restated as follows using matrix notations: 

εRw =                                 (4) 

Since wRRwRwRwεεε )()()( TTTT2 ===  and Σ=RRT
1-T

1 , the portfolio optimization 

problem (2) can be rewritten as follows: 3  

∑wwT

w
Minimize

                        
(5) 

subject to q  1 == rw1w TT and,  

, where 1w   and  denote column vectors of weights of N assets and 1’s, respectively; q is the 

target portfolio return; r  is a column vector of sri ' ; and Σ  is the covariance matrix of 

asset returns itr (i=1,2,···, N, t=1,2,∙∙∙,T). 

Equation (5) is exactly equivalent to the portfolio optimization problem formulated by 

Markowitz except for the non-negativity condition on the portfolio weights such that 

Niwi ,,2,1,0 =∀≥ , which is not necessary if short-selling is allowed. Also, because of Σ  

given in Equation (5), Markowitz assumed that there is an infinite number of time series data 
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for the assets, which is impossible in reality (Markowitz [1952], Sengupta [1983]). 

NEW APPROACH 

Let A denote a NT ×  matrix whose tith element is itr  and b denote a T-dimensional 
vector defined as 1b q= . Then, Equation (1) is rewritten as: 

εbAw +=  or εb-Aw =                       (6) 

From Equation (6), we see that the Markowitz approach seeks to find w that minimizes the 
error bAw −  in the least squared sense.  

EXHIBIT 1 

Markowitz Problem and Least Squares Solution 

 

Exhibit 1shows that geometrically the error is exactly the distance from b to the point Aw 

in the column space S, where }{ 1 N2 A,,A,A SpanS = . Let’s define U and T as follows. 
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Then we can see that the tangent point which is in the set UT ∩ satisfying the constraints of 

the Markowitz model and is also orthogonal to b (which is not in S) is the solution to the 

Markowitz problem.  

EXHIBIT 2 

New Approach  

 

Exhibit 2 shows the idea of new approach when T=1 and N=3. 321 r,r,r are the obseved 

return values of three assets at time T=1, respectively. Our approach seeks to find the solution 

that minimizes the distance from zero to the tangent line which is the intersection of the plane 

made of { q332211 =++ wrwrwr } and the plane made of { 1321 =++ www }. 

Applying the least squared method to Aw=b for a NT × matrix A implicitly assumes that 

the number of observations T is larger than the number of unknowns N, which means that 

Aw=b may or may not be consistent, depending on the relative size of observations and 
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unknowns. In other words, there probably will not exist a choice of w that perfectly fits the 

data b, and probably, vector b will not be a combination of the columns of matrix A. 

Therefore, the Markowitz approach to the portfolio optimization problem is valid only when 

the number of observations is bigger than or equal to the number of assets and when the 

column rank of matrix R in Equation (4) is full at the same time. Otherwise, the variance-

covariance matrix made by RRT  becomes a singular matrix. 

Definition: The rank of a matrix A is the dimension of the vector space generated (or 

spanned) by its columns, which is the same as the dimension of the space spanned by its rows. 

An alternative definition for the rank is as follows: For an m × n matrix A, if f is a linear map 

from nR  to nR  defined by Axx =)(f , )( nRx∈ , then the rank of A is the dimension of the 

image of f. 

Theorem1: Consider the system of equations Ax=b. One of the following three possibilities 

must hold. 4  

(1) If the rank of the augmented matrix [A b] is greater than that of A, that means b does 

not belong to column space of A, then no solution exists to Ax=b. 

(2) If the rank of [A b] equals that of A and equals the number of unknowns, then the 

system Ax=b has an exact solution. 

(3) If the rank of [A b] equals that of A and strictly less than the number of unknowns, 

then the system Ax=b has infinitely many solutions. 

When the system of equations to solve is the case 1 in the above theorem, the most likely 

solution can be found by getting the least squared solution. For the case 2, the general method 

to solve the system of equations derives the same solution as with the least squared method. 

For the case 3 in the above theorem, the least squared method doesn’t work and the 

covariance matrix becomes a singular matrix. There are infinitely many solutions that   
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satisfy 0=ε .  

We use the Singular Value Decomposition (SVD) method to solve a system of linear 

equations bAw =  as explained in Strang (2006). The SVD is known to be a good method 

for numerically stable computation. A common use of the SVD is to compute the best fit or 

least squared solution to a system of linear equations that has no solution or to find the best 

solution to a system of linear equations that has many solutions. 

Let S, D, and V denote a TT × , NT × , and NN ×  matrix, respectively. Then, A can 

be factored into: 

                nal)l)(orthogol)(diagona(orthogona== SDVA              (7) 

The columns of S  are eigenvectors of TAA , and the rows of V are eigenvectors of AAT . 

The singular values r21 σ,,σ,σ  on the diagonal of D  are the square roots of the nonzero 

eigenvalues of both TAA and AAT .Since VS  and in Equation (7) are orthogonal matrices, 

they do not change the length of the other vector when they are multiplied by it. 

Let a pseudoinverse of A be denoted by +A and let +D be an TN ×  matrix that has the 

reciprocals of the singular values r21 /σ,,/σ,/σ 111   on its diagonal. The pseudoinverse 

of +A is AA =++ )( . The pseudoinverse +A is a generalization of the inverse matrix 1A− of A. 

The pseudoinverse is defined and unique for all matrices whose entries are real or complex 

numbers. 

We can always compute the pseudoinverse +A using the SVD as follows: 
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TT SDVA ++ =                            (8) 

Then, we can solve bAw =  by using the pseudoinverse given by Equation (8) as in the 

following three cases: 

(1) If T = N, A is a full rank, which implies 1−+ = AA . In this case, bAbAw -1== + . 

(2) If T>N, bA+=w is the one that minimizes the quantity bAw − .That is, in this 

case, there are more constraining equations than variables w so that it is not 

generally possible to find an exact solution to these equations. Thus, the 

pseudoinverse given by Equation (8) gives a solution w such that Aw is the 

“closest” in the least squared sense to the desired vector b . 

(3) If T<N, there are generally infinite number of solutions, and bAw += is a 

particular solution that minimizes the 2-norm of w, denoted by w 2 among many 

solutions. It has the advantage of finding the solution that minimizes w 2 because 

it provides more diversified portfolio weights than the Markowitz solution does. 

Theorem2: If A is an nm×  matrix, then A has a singular value decomposition. 

The objective of the Markowitz model is to find the portfolio weights that minimize 

portfolio variance while achieving the target portfolio return on average. However, our 

approach attempts to find the portfolio that can achieve the target return at each point in time 

while minimizing the 2-norm of the portfolio weights. Consequently, the in-sample variance 

of portfolio is always zero in our approach.  

The out-of-sample performance of our approach depends on how well the in-sample 

return vectors )r,,r,r( Nttt 21  at each time t will span the out-of-sample return vectors. If 
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the out-of-sample return vectors were to be identical to the return vectors spanned by the in-

sample return vectors at each time t, they would satisfy q
1

=∑
=

N

i
iti rw . However, since it is 

impossible to span the unsystematic risk part of the out-of-sample return vectors by the in-

sample return vectors, we distinguish between the systematic risk part and the unsystematic 

risk part and attempt to span the out-of-sample systematic risk part by solely using the in-

sample systematic part of return vectors. To impose some structure on the estimation of the 

systematic part of returns, we assume stock returns are generated by Fama-French five factor 

model. We denote new model that is based on raw returns as new method without return 

structure and denote new model that uses returns estimated by Fama-French five factor 

model as new method with return structure.  

If we decompose A into the systematic risk part *A  and the unsystematic risk part Aε , 

AAA ε+= *                               (9) 

Then, the in-sample error should satisfy the following. 

w1wwAAw AA εε +=+= q*                       (10)  

Hence, the in-sample variance www A
T

A
T

A εεε =2  becomes positive. For the models that 

explain the systematic risk part *A , we use Fama-French five factor model. 5  

EMPIRICAL RESULTS 

To directly compare the results with those of Ledoit and Wolf [2003], we use the same 

data and portfolio rebalancing strategy as they used. We use the monthly stock returns 

extracted from the Center for Research in Security Prices (CRSP) from August 1962 to July 

1995. We consider common stocks traded on the New York Stock Exchange (NYSE) and the 
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American Stock Exchange (AMX) with valid CRSP returns for the last 132 months and valid 

Standard Industrial Classification (SIC) codes. 6  We use S&P 500 as a market index for 

market model and one month T-bill rate as a risk-free rate. We use the estimates for Fama-

French five factors provided by French website. 

We use data from August of year t-10 to July of year t as the in-sample period to estimate 

the mean vector and the covariance matrix of stock returns. Then on the first trading day in 

August of year t we build a portfolio with minimum variance using identity, pseudoinverse, 

market model and shrinkage to market estimators for the covariance matrix estimates as 

Ledoit and Wolf [2003] did and also a portfolio with minimum variance based on our model. 

We hold this portfolio until the last trading day in July of year t+1, at which time we liquidate 

it and start the process all over again. Thus, the out-of-sample period goes from August of 

year t to July of year t+1.    

For the purpose of comparison with Ledoit and Wolf [2003], we consider two minimum 

variance portfolios: the global minimum variance portfolio and the portfolio with minimum 

variance under the constraint of having 20% expected return. 7  In both cases short sales are 

allowed. The main quantity of interest is the out-of-sample Sharpe ratio or CEQ return in 

addition to the out-of-sample mean and standard deviation of this investment strategy over 

the 23-year period from August 1972 to July 1995. However, since Ledoit and Wolf [2003] 

are interested in showing what kind of reduction in out-of-sample variance their method 

yields, they only report the out-of-sample standard deviation of the investment strategy (see 

Table 1, p. 617 in Ledoit and Wolf [2003]).   

Certainty-equivalent (CEQ) return is defined as the risk-free rate that an investor is 
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willing to accept rather than adopting a particular risky return and calculated as follows.  

2
pp 2

CEQ σ
γ

−µ=                             (11) 

, where pµ =mean of portfolio return, 2
pσ =variance of portfolio return, and γ=coefficient of 

relative risk aversion ( γ=3 and 5 are assumed).  

We consider four covariance matrix estimators proposed in the literature; identity, 

pseudoinverse, market model and shrinkage to market estimators. The simplest model is to 

assume that the covariance matrix is a scalar multiple of the identity matrix. When the 

number of assets N exceeds the number of returns T, the inverse of the sample covariance 

does not exist. In this case, replacing the inverse of the sample covariance matrix by the 

pseudoinverse yields well-defined portfolio weights in the Markowitz model. Market model 

is the single-index covariance matrix of Sharpe [1963]. Finally, the shrinkage to market 

estimator that Ledoit and Wolf [2003] recommended is as follows. 

SFS )
T
k1(

T
k

−+=
^

                         (12) 

, where F is the single-index covariance matrix, S is the sample covariance matrix and 
T
k

 is 

an optimal shrinkage intensity.  

EXHIBIT 3  

Out-of-Sample Standard Deviation of Minimum Variance Portfolio 

 Unconstrained  Constrained(20%) 

  Standard 
Deviation 

Ledoit 
-Wolf  

Standard 
Deviation 

Ledoit 
-Wolf 

Identity 18.43 17.75  18.54 17.94 
Pseudoinverse 12.10 12.37  13.35 13.73 
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Market model 11.15 12.00  13.12 13.77 
Shrinkage to market 8.95 9.55  9.45 10.43 
New method without 
return structure 9.87   10.62  
New method with 
return structure 10.28   11.46  

 

Exhibit 3 shows the out-of-sample standard deviation of the minimum variance 

portfolios for the four covariance matrix estimators and for the two new methods. 

“Unconstrained” refers to the global minimum variance portfolios while “constrained” refers 

to the minimum variance portfolios with 20% expected return. Standard deviation is 

measured out-of-sample at the monthly frequency, annualized through multiplication by 12  

and expressed in percentage. The columns of Ledoit-Wolf show the results of Table 1 of 

Ledoit-Wolf [2003], which is almost the same as our results. We can see that the shrinkage to 

market estimator shows the smallest out-of-sample standard deviation, while new method 

without return structure is second best and new method with return structure is third best.  

EXHIBIT 4  

Out-of-Sample Sharpe Ratio and CEQ Return of Minimum Variance Portfolio When In-
Sample Period is 10 Years 

 Unconstrained 
  STD Mean Sharpe Ratio CEQ(γ=3) CEQ(γ=5) 
Identity 18.43 15.47 0.45 3.18 -0.22 
Pseudoinverse 12.10 13.26 0.50 3.87 2.40 
Market model 11.15 11.90 0.42 2.84 1.59 
Shrinkage to market 8.95 12.56 0.60 4.16 3.35 
New method without 
return structure 9.87 13.71 0.66 5.05 4.07 

New method with return 
structure 10.28 15.00 0.76 6.21 5.16 

 Constrained(20%) 
  STD Mean Sharpe Ratio CEQ(γ=3) CEQ(γ=5) 
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Identity 18.54 14.41 0.39 2.06 -1.38 
Pseudoinverse 13.35 11.58 0.33 1.71 -0.07 
Market model 13.12 9.56 0.18 -0.22 -1.95 
Shrinkage to market 9.45 11.05 0.41 2.51 1.61 
New method without 
return structure 10.62 11.07 0.37 2.18 1.05 

New method with return 
structure 11.46 12.59 0.47 3.42 2.10 

 Constrained(16%) 
  STD Mean Sharpe Ratio CEQ(γ=3) CEQ(γ=5) 
Identity 18.43 15.70 0.46 3.41 0.01 
Pseudoinverse 12.27 12.53 0.44 3.07 1.56 
Market model 12.14 10.29 0.26 0.88 -0.59 
Shrinkage to market 9.14 11.52 0.47 3.07 2.23 
New method without 
return structure 10.10 11.96 0.47 3.23 2.21 

New method with return 
structure 10.71 13.50 0.59 4.58 3.43 

 

Exhibit 4 shows the out-of-sample standard deviation, mean, Sharpe ratio and CEQ 

return of the minimum variance portfolios for the four covariance matrix estimators and for 

the two new methods when we maintain the in-sample period as 10 years. We can see that for 

all cases we consider, new method with return structure shows the highest out-of-sample 

Sharpe ratio and CEQ return, while new method without return structure and the shrinkage to 

market estimator are second best or third best, depending on the constraint on expected return. 

Although the shrinkage to market estimator method shows the smallest out-of-sample 

standard deviation, it also shows the lowest out-of-sample mean compared to both new 

methods. Consequently, concerning Sharpe ratio and CEQ return, the shrinkage to market 

estimator method cannot perform the best. We claim that new model that uses returns 

estimated by Fama-French five factor model (new method with return structure) performs the 

best.  
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EXHIBIT 5  

Out-of-Sample Sharpe Ratio and CEQ Return of Minimum Variance Portfolio When In-
Sample Period is 2 Years 

 Unconstrained 
  STD Mean Sharpe Ratio CEQ(γ=3) CEQ(γ=5) 
Identity 19.83 15.30 0.44 2.20 -1.73 
Pseudoinverse 19.31 15.15 0.44 2.35 -1.38 
Market model 9.96 11.30 0.48 2.62 1.62 
Shrinkage to market 9.60 11.58 0.52 2.99 2.07 
New method without 
return structure 12.10 14.38 0.65 4.99 3.52 

New method with return 
structure 12.49 14.31 0.62 4.77 3.21 

 Constrained(20%) 
  STD Mean Sharpe Ratio CEQ(γ=3) CEQ(γ=5) 
Identity 18.18 14.65 0.45 2.50 -0.80 
Pseudoinverse 18.41 16.08 0.52 3.80 0.41 
Market model 9.85 11.54 0.51 2.88 1.91 
Shrinkage to market 9.43 11.69 0.54 3.15 2.26 
New method without 
return structure 11.72 13.83 0.62 4.57 3.20 

New method with return 
structure 12.15 13.89 0.60 4.47 3.00 

 

Exhibit 5 shows the out-of-sample standard deviation, mean, Sharpe ratio and CEQ 

return of the minimum variance portfolios for the four covariance matrix estimators and for 

the two new methods when we reduce the in-sample period to 2 years. 8  In this case, new 

method without return structure shows the highest out-of-sample Sharpe ratio and CEQ return, 

while new method with return structure is second best and the shrinkage to market estimator 

is third best. We can see that when the in-sample window becomes shorter, the out-of-sample 

performance of new method without return structure that relies on raw returns strengthens.  

CONCLUSIONS 

We propose a new portfolio optimization approach that does not need the estimation of 
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the covariance matrix and provides solutions to a system of equations using the Singular 

Value Decomposition (SVD) method with the additional constraint that the 2-norm of the 

portfolio weights is minimized. By imposing some structure on stock returns, we show our 

new approach can enhance the out-of-sample performance of portfolio further.  

To directly compare the results with those of Ledoit and Wolf [2003], we use the same 

data and portfolio rebalancing strategy as they used. When we assume the in-sample window 

is 10 years, new method with return structure shows the highest out-of-sample Sharpe ratio 

and CEQ return, while new method without return structure and the shrinkage to market 

estimator are second best or third best, depending on the constraint on expected return. 

Although the shrinkage to market estimator method shows the smallest out-of-sample 

standard deviation, it also shows the lowest out-of-sample mean compared to both new 

methods. Consequently, concerning Sharpe ratio and CEQ return, the shrinkage to market 

estimator method cannot perform the best. Furthermore, we find that when the in-sample 

window becomes shorter and less than 4 years, the out-of-sample performance of new 

method without return structure that relies on raw returns strengthens. In this case, new 

method without return structure shows the highest out-of-sample Sharpe ratio and CEQ return, 

while new method with return structure is second best and the shrinkage to market estimator 

is third best. 

ENDNOTES 

1DeMiguel et al. [2008] suggests a new approach for determining the optimal portfolio 

weights in the presence of estimation error by solving the traditional minimum variance 

problem with the additional constraint that the norm of the portfolio weight vector be smaller 

than a given threshold. 
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2 The bold small letters in the equation denote the column vector notation, and the bold 

capital letters denote the matrix notation. 

3 Ignoring (1/(T-1)) does not affect the problem. 

4 See p.146 of Ben and Daniel [1987]. 

5 We did the same analysis using the market model and Fama-French three factor model 

which was omitted. 

6 Although Ledoit and Wolf [2003] used 120 months as a non-missing period for the 

sample, we use 132 months to eliminate the possibility of delisted companies among the 

sample which could change the composition of portfolio during the out-of-sample period. 

7 In order to see the effect of the change in expected return on the out-of-sample 

performance of Sharpe ratio and CEQ return, we consider the constraint of 16 % as well. 

8 Although we do not report in the paper, we did the same analysis for different in-

sample windows and found that for the in-sample windows less than 4 years, new method 

without return structure performs the best and for the in-sample windows more than or equal 

to 5 years, new method with return structure performs the best. 
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